

Compact flange

Assessment of oval compact flange according to EN13445-3 annex B

P. Schreurs Sintra-2009-019-03

Project description

- Design of a compact flange
- Project in cooperation with PLT Pipe Line Technology Netherlands

Principle of compactflange

- Contact pressure between heel of both flanges ensures leak tightness
- Seal ring is secondary sealing
- Due to angle of flange face, a high contact pressure is established in sealing surface
- High tolerance for cyclic loading with respect to leak tightness.

Stud

Nut

Wedge

Principle of compactflange

Before assembly Weld neck flange Heel IX seal ring After assembly Bolt clamping force Fluid pressure Hydrostatic end force nhue avtornal loade Bolt clamping force designloads

FEA model

- ¼ model of flange
- 1st order brick elements
- Contact between flanges and sealring
- Pretension elements in bolts
- Tie between bolts and flanges

FEA model

Loadcases (1)

- According EN13445-3 annex B
 - Gross plastic deformation design check
 - Gross plastic deformation testconditions check
 - Progressive plastic deformation (Shakedown)

Loadcases (2)

Load case	Load	Bolt	Pressure	Temp	External loading from piping
	steps	pretension	[Barg]	[°C]	system
		(per bolt)			[N]
GPD - DC	1	800.000N	-	-	-
Design	2	Bolt fixed	P _{design}	T _{design}	External loading x1,2
conditions		in position	x1,2	-	
GPD - DC	1	800.000N	-	-	-
Test	2	Bolt fixed	p _{test}	-	-
conditions		in position			
PPD-DC	1	800.000N	-	-	-
Design	2	Bolt fixed	P _{design}	T _{design}	External loading
conditions	2	in position	0	0	0
	5	4	0	0	0
	4		P _{design}	T _{design}	External loading

Assessment

Load case	Assessment criteria		
GPD - DC	Maximum allowable strain		
Design conditions	<5%		
	For bolts a maximum of 2% is		
	used		
GPD - DC	Maximum allowable strain		
Test	<7%		
conditions	For bolts a maximum of 2% is		
	used		
PPD-DC	Cumulative maximum 5%		
Design conditions	strain after 500 cycles		
	For bolts a maximum of 2% is		
	used		

Gross plastic deformation design/test case

 Maximum plastic deformation is in welding neck area

Progressive plastic deformation (1)

- 5 critical locations:
 - Heel
 - Wedge
 - Neck
 - Bolts
 - Seal
- Goal is to prove that construction shakes down to lineair elastic behaviour.

Progressive plastic deformation (2)

Plastic strain in the compact flange

Progressive plastic deformation (3)

- After 1st cycle no additional plastic deformation occures
- Flange connection shakes down to linear elastic behaviour after 1 cycle

Location of assesment of contactpressure

Contact pressure between components

contact pressure on heel surface

Conclusion

- Plastic strain in design and test conditions are lower than 5%
- Connection shakes down to lineair elastic behaviour
- Contact pressure is always higher then 2x internal pressure, thus sealing is established.